196 research outputs found

    Comparing Segmentation by Time and by Motion in Visual Search: An fMRI Investigation

    Get PDF
    Abstract Brain activity was recorded while participants engaged in a difficult visual search task for a target defined by the spatial configuration of its component elements. The search displays were segmented by time (a preview then a search display), by motion, or were unsegmented. A preparatory network showed activity to the preview display, in the time but not in the motion segmentation condition. A region of the precuneus showed (i) higher activation when displays were segmented by time or by motion, and (ii) correlated activity with larger segmentation benefits behaviorally, regardless of the cue. Additionally, the results revealed that success in temporal segmentation was correlated with reduced activation in early visual areas, including V1. The results depict partially overlapping brain networks for segmentation in search by time and motion, with both cue-independent and cue-specific mechanisms.</jats:p

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Genetic consequences of Quaternary climatic oscillations in the Himalayas: Primula tibetica as a case study based on restriction site-associated DNA sequencing.

    Get PDF
    The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred during or across the Quaternary glacial cycles. The two lineages at both edges of the distribution were found to be more vulnerable and responded in different ways to past climatic changes. These results illustrate how past climatic changes affected the demographic history of Himalayan organisms. Our findings highlight the significance of combining genomic approaches with environmental data when evaluating the effects of past climatic changes

    Optical in situ monitoring during the synthesis of halide perovskite solar cells reveals formation kinetics and evolution of optoelectronic properties

    Get PDF
    The formation mechanism and the evolution of optoelectronic properties during annealing of chlorine derived methylammonium lead iodide MAPbI3 amp; 8722;xClx are investigated in detail combining in situ and ex situ optical and structural characterization. Using in situ optical reflectometry we are able to monitor the evolution of the MAPbI3 amp; 8722;xClx phase as a function of time and processing temperature. The formation kinetics is fitted using an improved Johnson Mehl Avrami Kolmogorov model and a delayed formation of MAPbI3 amp; 8722;xClx is found when chlorine is present in the precursor. This is verified by X ray diffraction and X ray fluorescence measurements. From absolute photoluminescence measurements we determine the implied Voc during film formation, which exhibits a maximum at a specific time during the annealing process. In conjunction with ex situ time resolved photoluminescence we deduce a decrease in the net doping density for increased annealing times, while the minority carrier lifetime stays constant. We thus demonstrate the potential of in situ optical spectroscopy to monitor and tailor the electronic properties of hybrid perovskites directly during film growth, which can be easily applied to different growth recipes and synthesis environment

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    The Afrotropical breeding grounds of the Palearctic-African migratory painted lady butterflies (Vanessa cardui)

    Get PDF
    Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.This work was funded by the National Geographic Society (grant WW1-300R-18); by the British Ecological Society (grant LRB16/1015); by the Research and Conservation Projects of the Fundació Barcelona Zoo; by the grant PID2020-117739GA-I00/MCIN/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation and the Spanish State Research Agency to G.T.; by the grant LINKA20399 from the Spanish National Research Council iLink program to G.T., C.P.B., N.E.P., and R.V.; by fellowship FPU19/01593 of the program Formación de Profesorado Universitario (FPU) to A.G.-B.; by the Turkana Basin Institute, National Geographic Society, and Whitley Fund for Nature to D.J.M.; and by grant 2018-00738 of the New Frontiers in Research Fund (Government of Canada) to G.T. and C.P.B.Significance Abstract Results Field Surveys, Larval Hostplants, and Field-Based Model Validation Monitoring Results and Population Dynamics across Regions A Refined Model for the Afrotropical Region Discussion The Afrotropical Breeding Grounds of V. cardui: Multiple Generations Shift South Toward the Tropics Diversity and Phenology of Larval Hostplants in the Afrotropics The Ecological Relevance of Delimiting Spatiotemporal Distributions in Migratory Insects Conclusion Methods December-January Field Surveys and Year-Round Monitoring Spatiotemporal Ecological Niche Modeling Data, Materials, and Software Availability Acknowledgments Supporting Information Reference

    Performance and automation of ancient DNA capture with RNA hyRAD probes

    Get PDF
    DNA hybridization-capture techniques allow researchers to focus their sequencing efforts on preselected genomic regions. This feature is especially useful when analys- ing ancient DNA (aDNA) extracts, which are often dominated by exogenous environ- mental sources. Here, we assessed, for the first time, the performance of hyRAD as an inexpensive and design-free alternative to commercial capture protocols to obtain authentic aDNA data from osseous remains. HyRAD relies on double enzymatic re- striction of fresh DNA extracts to produce RNA probes that cover only a fraction ofthe genome and can serve as baits for capturing homologous fragments from aDNA li- braries. We found that this approach could retrieve sequence data from horse remains coming from a range of preservation environments, including beyond radiocarbon range, yielding up to 146.5-fold on-target enrichment for aDNA extracts showing ex- tremely low endogenous content (20%¿30%), while the fraction of endogenous reads mapping on- and off-target was relatively insensi- tive to the original endogenous DNA content. Procedures based on two instead of a single round of capture increased on-target coverage up to 3.6-fold. Additionally, we used methylation-sensitive restriction enzymes to produce probes targeting hypo- methylated regions, which improved data quality by reducing post-mortem DNA dam- age and mapping within multicopy regions. Finally, we developed a fully automated hyRAD protocol utilizing inexpensive robotic platforms to facilitate capture process- ing. Overall, our work establishes hyRAD as a cost-effective strategy to recover a set of shared orthologous variants across multiple ancient samples.This project received funding from: the University Paul Sabatier IDEX Chaire d’Excellence (OURASI); the CNRS Programme de Recherche Conjoint (PRC); the CNRS International Research Project (IRP AMADEUS); the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 797449; the Russian Foundation for Basic Research, project No. 19-59-15001 “Horses and their importance in the life of the ancient population of Altai and adjacent territories: interdisciplinary research and reconstruction”; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 681605)

    Distinct contributions of extrastriate body area and temporoparietal junction in perceiving one's own and others' body.

    Get PDF
    The right temporoparietal cortex plays a critical role in body representation. Here, we applied repetitive transcranial magnetic stimulation (rTMS) over right extrastriate body area (EBA) and temporoparietal junction (TPJ) to investigate their causative roles in perceptual representations of one's own and others' body. Healthy women adjusted size-distorted pictures of their own body or of the body of another person according to how they perceived the body (subjective task) or how others perceived it (intersubjective task). In keeping with previous reports, at baseline, we found an overall underestimation of body size. Crucially, EBA-rTMS increased the underestimation bias when participants adjusted the images according to how others perceived their own or the other woman's body, suggesting a specific role of EBA in allocentric body representations. Conversely, TPJ-rTMS increased the underestimation bias when participants adjusted the body of another person, either a familiar other or a close friend, in both subjective and intersubjective tasks, suggesting an involvement of TPJ in representing others' bodies. These effects were body-specific, since no TMS-induced modulation was observed when participants judged a familiar object. The results suggest that right EBA and TPJ play active and complementary roles in the complex interaction between the perceptions of one's own and other people's body

    Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous Magnetic Resonance Imaging (MRI) studies of people with anorexia nervosa (AN) have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume.</p> <p>Methods</p> <p>Voxel based morphometry (VBM), corrected for total intracranial volume, age, BMI, years of education in 14 women with AN (8 RAN and 6 BPAN) and 21 women (HC) was performed. Correlations between brain volume and dietary restraint were done using Statistical Package for the Social Sciences (SPSS).</p> <p>Results</p> <p>Increased right dorsolateral prefrontal cortex (DLPFC) and reduced right anterior insular cortex, bilateral parahippocampal gyrus, left fusiform gyrus, left cerebellum and right posterior cingulate volumes in AN compared to HC. RAN compared to BPAN had reduced left orbitofrontal cortex, right anterior insular cortex, bilateral parahippocampal gyrus and left cerebellum. Age negatively correlated with right DLPFC volume in HC but not in AN; dietary restraint and BMI predicted 57% of variance in right DLPFC volume in AN.</p> <p>Conclusions</p> <p>In AN, brain volume differences were found in appetitive, somatosensory and top-down control brain regions. Differences in regional GMV may be linked to levels of appetitive restraint, but whether they are state or trait is unclear. Nevertheless, these discrete brain volume differences provide candidate brain regions for further structural and functional study in people with eating disorders.</p
    corecore